3-1 Asymptotic behavior of polynomials
Let
$$p(n) = \sum_{i = 0}^d a_i n^i,$$
where $a_d > 0$, be a degree-$d$ polynomial in $n$, and let $k$ be a constant. Use the definitions of the asymptotic notations to prove the following properties.
a. If $k \ge d$, then $p(n) = O(n^k)$.
b. If $k \le d$, then $p(n) = \Omega(n^k)$.
c. If $k = d$, then $p(n) = \Theta(n^k)$.
d. If $k > d$, then $p(n) = o(n^k)$.
e. If $k < d$, then $p(n) = \omega(n^k)$.
Let's see that $p(n) = O(n^d)$. We need do pick $c = a_d + b$, such that
$$\sum\limits_{i = 0}^d a_i n^i = a_d n^d + a_{d - 1}n^{d - 1} + \cdots + a_1n + a_0 \le cn^d.$$
When we divide by $n^d$, we get
$$c = a_d + b \ge a_d + \frac{a_{d - 1}}n + \frac{a_{d - 2}}{n^2} + \cdots + \frac{a_0}{n^d}.$$
and
$$b \ge \frac{a_{d - 1}}n + \frac{a_{d - 2}}{n^2} + \cdots + \frac{a_0}{n^d}.$$
If we choose $b = 1$, then we can choose $n_0$,
$$n_0 = \max(da_{d - 1}, d\sqrt{a_{d - 2}}, \ldots, d\sqrt[d]{a_0}).$$
Now we have $n_0$ and $c$, such that
$$p(n) \le cn^d \quad \text{for } n \ge n_0,$$
which is the definition of $O(n^d)$.
By chosing $b = -1$ we can prove the $\Omega(n^d)$ inequality and thus the $\Theta(n^d)$ inequality.
It is very similar to prove the other inequalities.