Skip to content

1121. Divide Array Into Increasing Sequences 👍

  • Time: $O(n)$
  • Space: $O(1)$
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
class Solution {
 public:
  bool canDivideIntoSubsequences(vector<int>& nums, int k) {
    // Find the number with the maxFreq, we need at least maxFreq * k elements
    // e.g. nums = [1, 2, 2, 3, 4], we have maxFreq = 2 (two 2s), so we have to
    // Split nums into two subsequences say k = 3, the minimum length of nums is
    // 2 x 3 = 6, which is impossible if nums.size() = 5
    const int n = nums.size();
    int freq = 1;
    int maxFreq = 1;

    for (int i = 1; i < n; ++i) {
      freq = nums[i - 1] < nums[i] ? 1 : ++freq;
      maxFreq = max(maxFreq, freq);
    }

    return n >= maxFreq * k;
  }
};
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
class Solution {
  public boolean canDivideIntoSubsequences(int[] nums, int k) {
    // Find the number with the maxFreq, we need at least maxFreq * k elements
    // e.g. nums = [1, 2, 2, 3, 4], we have maxFreq = 2 (two 2s), so we have to
    // Split nums into two subsequences say k = 3, the minimum length of nums is 2 x
    // 3 = 6, which is impossible if nums.size() = 5
    final int n = nums.length;
    int freq = 1;
    int maxFreq = 1;

    for (int i = 1; i < n; ++i) {
      freq = nums[i - 1] < nums[i] ? 1 : ++freq;
      maxFreq = Math.max(maxFreq, freq);
    }

    return n >= maxFreq * k;
  }
}
1
2
3
4
5
6
7
class Solution:
  def canDivideIntoSubsequences(self, nums: list[int], k: int) -> bool:
    # Find the number with the maxFreq, we need at least maxFreq * k elements
    # e.g. nums = [1, 2, 2, 3, 4], we have maxFreq = 2 (two 2s), so we have to
    # Split nums into two subsequences say k = 3, the minimum length of nums is 2 x
    # 3 = 6, which is impossible if len(nums) = 5
    return len(nums) >= k * max(Counter(nums).values())