class Solution {
public int minimumMountainRemovals(int[] nums) {
int[] l = lengthOfLIS(nums);
int[] r = reversed(lengthOfLIS(reversed(nums)));
int maxMountainSeq = 0;
for (int i = 0; i < nums.length; ++i)
if (l[i] > 1 && r[i] > 1)
maxMountainSeq = Math.max(maxMountainSeq, l[i] + r[i] - 1);
return nums.length - maxMountainSeq;
}
private int[] lengthOfLIS(int[] nums) {
// tail[i] := the min tail of all increasing subseqs with length i + 1
// It's easy to see that tail must be an increasing array.
List<Integer> tail = new ArrayList<>();
// dp[i] := length of LIS ending at nums[i]
int[] dp = new int[nums.length];
for (int i = 0; i < nums.length; ++i) {
final int num = nums[i];
if (tail.isEmpty() || num > tail.get(tail.size() - 1))
tail.add(num);
else
tail.set(firstGreaterEqual(tail, num), num);
dp[i] = tail.size();
}
return dp;
}
private int firstGreaterEqual(List<Integer> A, int target) {
int l = 0;
int r = A.size();
while (l < r) {
final int m = (l + r) / 2;
if (A.get(m) >= target)
r = m;
else
l = m + 1;
}
return l;
}
private int[] reversed(int[] nums) {
int[] A = nums.clone();
int l = 0;
int r = nums.length - 1;
while (l < r)
swap(A, l++, r--);
return A;
}
private void swap(int[] A, int i, int j) {
final int temp = A[i];
A[i] = A[j];
A[j] = temp;
}
}