Skip to content

315. Count of Smaller Numbers After Self 👍

Approach 1: Fenwick Tree

  • Time: $O(n\log n)$
  • Space: $O(n)$
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
class FenwickTree {
 public:
  FenwickTree(int n) : sums(n + 1) {}

  void add(int i, int delta) {
    while (i < sums.size()) {
      sums[i] += delta;
      i += lowbit(i);
    }
  }

  int get(int i) const {
    int sum = 0;
    while (i > 0) {
      sum += sums[i];
      i -= lowbit(i);
    }
    return sum;
  }

 private:
  vector<int> sums;

  static inline int lowbit(int i) {
    return i & -i;
  }
};

class Solution {
 public:
  vector<int> countSmaller(vector<int>& nums) {
    vector<int> ans(nums.size());
    const unordered_map<int, int> ranks = getRanks(nums);
    FenwickTree tree(ranks.size());

    for (int i = nums.size() - 1; i >= 0; --i) {
      const int num = nums[i];
      ans[i] = tree.get(ranks.at(num) - 1);
      tree.add(ranks.at(num), 1);
    }

    return ans;
  }

 private:
  unordered_map<int, int> getRanks(const vector<int>& nums) {
    unordered_map<int, int> ranks;
    set<int> sorted(nums.begin(), nums.end());
    int rank = 0;
    for (const int num : sorted)
      ranks[num] = ++rank;
    return ranks;
  }
};
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
class FenwickTree {
  public FenwickTree(int n) {
    sums = new int[n + 1];
  }

  public void add(int i, int delta) {
    while (i < sums.length) {
      sums[i] += delta;
      i += lowbit(i);
    }
  }

  public int get(int i) {
    int sum = 0;
    while (i > 0) {
      sum += sums[i];
      i -= lowbit(i);
    }
    return sum;
  }

  private int[] sums;

  private static int lowbit(int i) {
    return i & -i;
  }
}

class Solution {
  public List<Integer> countSmaller(int[] nums) {
    List<Integer> ans = new ArrayList<>();
    Map<Integer, Integer> ranks = getRanks(nums);
    FenwickTree tree = new FenwickTree(ranks.size());

    for (int i = nums.length - 1; i >= 0; --i) {
      final int num = nums[i];
      ans.add(tree.get(ranks.get(num) - 1));
      tree.add(ranks.get(num), 1);
    }

    Collections.reverse(ans);
    return ans;
  }

  private Map<Integer, Integer> getRanks(int[] nums) {
    Map<Integer, Integer> ranks = new HashMap<>();
    SortedSet<Integer> sorted = new TreeSet<>();
    for (final int num : nums)
      sorted.add(num);
    int rank = 0;
    for (Iterator<Integer> it = sorted.iterator(); it.hasNext();)
      ranks.put(it.next(), ++rank);
    return ranks;
  }
}
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
class FenwickTree:
  def __init__(self, n: int):
    self.sums = [0] * (n + 1)

  def add(self, i: int, delta: int) -> None:
    while i < len(self.sums):
      self.sums[i] += delta
      i += FenwickTree.lowbit(i)

  def get(self, i: int) -> int:
    summ = 0
    while i > 0:
      summ += self.sums[i]
      i -= FenwickTree.lowbit(i)
    return summ

  @staticmethod
  def lowbit(i: int) -> int:
    return i & -i


class Solution:
  def countSmaller(self, nums: list[int]) -> list[int]:
    ans = []
    ranks = self._getRanks(nums)
    tree = FenwickTree(len(ranks))

    for num in reversed(nums):
      ans.append(tree.get(ranks[num] - 1))
      tree.add(ranks[num], 1)

    return ans[::-1]

  def _getRanks(self, nums: list[int]) -> dict[int, int]:
    ranks = collections.Counter()
    rank = 0
    for num in sorted(set(nums)):
      rank += 1
      ranks[num] = rank
    return ranks

Approach 2: Segment Tree w/ tree array

  • Time: $O(n\log n)$
  • Space: $O(n)$
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
class SegmentTree {
 public:
  explicit SegmentTree(const vector<int>& nums) : n(nums.size()), tree(n * 4) {
    build(nums, 0, 0, n - 1);
  }

  // Adds val to nums[i].
  void add(int i, int val) {
    add(0, 0, n - 1, i, val);
  }

  // Returns sum(nums[i..j]).
  int query(int i, int j) const {
    return query(0, 0, n - 1, i, j);
  }

 private:
  const int n;       // the size of the input array
  vector<int> tree;  // the segment tree

  void build(const vector<int>& nums, int treeIndex, int lo, int hi) {
    if (lo == hi) {
      tree[treeIndex] = nums[lo];
      return;
    }
    const int mid = (lo + hi) / 2;
    build(nums, 2 * treeIndex + 1, lo, mid);
    build(nums, 2 * treeIndex + 2, mid + 1, hi);
    tree[treeIndex] = merge(tree[2 * treeIndex + 1], tree[2 * treeIndex + 2]);
  }

  void add(int treeIndex, int lo, int hi, int i, int val) {
    if (lo == hi) {
      tree[treeIndex] += val;
      return;
    }
    const int mid = (lo + hi) / 2;
    if (i <= mid)
      add(2 * treeIndex + 1, lo, mid, i, val);
    else
      add(2 * treeIndex + 2, mid + 1, hi, i, val);
    tree[treeIndex] = merge(tree[2 * treeIndex + 1], tree[2 * treeIndex + 2]);
  }

  int query(int treeIndex, int lo, int hi, int i, int j) const {
    if (i <= lo && hi <= j)  // [lo, hi] lies completely inside [i, j].
      return tree[treeIndex];
    if (j < lo || hi < i)  // [lo, hi] lies completely outside [i, j].
      return 0;
    const int mid = (lo + hi) / 2;
    return merge(query(treeIndex * 2 + 1, lo, mid, i, j),
                 query(treeIndex * 2 + 2, mid + 1, hi, i, j));
  }

  int merge(int left, int right) const {
    return left + right;
  }
};

class Solution {
 public:
  vector<int> countSmaller(vector<int>& nums) {
    vector<int> ans(nums.size());
    unordered_map<int, int> ranks;
    getRanks(nums, ranks);
    SegmentTree tree(vector<int>(ranks.size() + 1));

    for (int i = nums.size() - 1; i >= 0; --i) {
      const int num = nums[i];
      ans[i] = tree.query(0, ranks[num] - 1);
      tree.add(ranks[num], 1);
    }

    return ans;
  }

 private:
  void getRanks(const vector<int>& nums, unordered_map<int, int>& ranks) {
    set<int> sorted(nums.begin(), nums.end());
    int rank = 0;
    for (const int num : sorted)
      ranks[num] = ++rank;
  }
};

Approach 3: Segment Tree w/ SegmentTreeNode

  • Time: $O(n\log n)$
  • Space: $O(n)$
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
struct SegmentTreeNode {
  int lo;
  int hi;
  int sum;
  SegmentTreeNode* left;
  SegmentTreeNode* right;
  SegmentTreeNode(int lo, int hi, int sum, SegmentTreeNode* left = nullptr,
                  SegmentTreeNode* right = nullptr)
      : lo(lo), hi(hi), sum(sum), left(left), right(right) {}
  ~SegmentTreeNode() {
    delete left;
    delete right;
    left = nullptr;
    right = nullptr;
  }
};

class SegmentTree {
 public:
  explicit SegmentTree(const vector<int>& nums)
      : root(build(nums, 0, nums.size() - 1)) {}

  void update(int i, int val) {
    update(root.get(), i, val);
  }

  int query(int i, int j) const {
    return query(root.get(), i, j);
  }

 private:
  std::unique_ptr<SegmentTreeNode> root;

  SegmentTreeNode* build(const vector<int>& nums, int lo, int hi) const {
    if (lo == hi)
      return new SegmentTreeNode(lo, hi, nums[lo]);
    const int mid = (lo + hi) / 2;
    SegmentTreeNode* left = build(nums, lo, mid);
    SegmentTreeNode* right = build(nums, mid + 1, hi);
    return new SegmentTreeNode(lo, hi, left->sum + right->sum, left, right);
  }

  void update(SegmentTreeNode* root, int i, int val) {
    if (root->lo == i && root->hi == i) {
      root->sum += val;
      return;
    }
    const int mid = (root->lo + root->hi) / 2;
    if (i <= mid)
      update(root->left, i, val);
    else
      update(root->right, i, val);
    root->sum = root->left->sum + root->right->sum;
  }

  int query(SegmentTreeNode* root, int i, int j) const {
    // [lo, hi] lies completely inside [i, j].
    if (i <= root->lo && root->hi <= j)
      return root->sum;
    // [lo, hi] lies completely outside [i, j].
    if (j < root->lo || root->hi < i)
      return 0;
    return query(root->left, i, j) + query(root->right, i, j);
  }

  int merge(int left, int right) const {
    return left + right;
  }
};

class Solution {
 public:
  vector<int> countSmaller(vector<int>& nums) {
    vector<int> ans(nums.size());
    unordered_map<int, int> ranks;
    getRanks(nums, ranks);
    SegmentTree tree(vector<int>(ranks.size() + 1));

    for (int i = nums.size() - 1; i >= 0; --i) {
      const int num = nums[i];
      ans[i] = tree.query(0, ranks[num] - 1);
      tree.update(ranks[num], 1);
    }

    return ans;
  }

 private:
  void getRanks(const vector<int>& nums, unordered_map<int, int>& ranks) {
    set<int> sorted(nums.begin(), nums.end());
    int rank = 0;
    for (const int num : sorted)
      ranks[num] = ++rank;
  }
};

Approach 4: Merge Sort

  • Time: $O(n\log n)$
  • Space: $O(n)$
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
struct Item {
  int num;
  int index;
};

class Solution {
 public:
  vector<int> countSmaller(vector<int>& nums) {
    const int n = nums.size();
    vector<int> ans(n);
    vector<Item> items(n);

    for (int i = 0; i < n; ++i)
      items[i] = Item(nums[i], i);

    mergeSort(items, 0, n - 1, ans);
    return ans;
  }

 private:
  void mergeSort(vector<Item>& items, int l, int r, vector<int>& ans) {
    if (l >= r)
      return;

    const int m = (l + r) / 2;
    mergeSort(items, l, m, ans);
    mergeSort(items, m + 1, r, ans);
    merge(items, l, m, r, ans);
  }

  void merge(vector<Item>& items, int l, int m, int r, vector<int>& ans) {
    vector<Item> sorted(r - l + 1);
    int k = 0;           // sorted's index
    int i = l;           // left's index
    int j = m + 1;       // right's index
    int rightCount = 0;  // the number of numbers < items[i].num

    while (i <= m && j <= r)
      if (items[i].num > items[j].num) {
        ++rightCount;
        sorted[k++] = items[j++];
      } else {
        ans[items[i].index] += rightCount;
        sorted[k++] = items[i++];
      }

    // Put the possible remaining left part into the sorted array.
    while (i <= m) {
      ans[items[i].index] += rightCount;
      sorted[k++] = items[i++];
    }

    // Put the possible remaining right part into the sorted array.
    while (j <= r)
      sorted[k++] = items[j++];

    copy(sorted.begin(), sorted.end(), items.begin() + l);
  }
};
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
class Solution {
  public List<Integer> countSmaller(int[] nums) {
    final int n = nums.length;
    int[] ans = new int[n];
    Item[] items = new Item[n];

    for (int i = 0; i < n; ++i)
      items[i] = new Item(nums[i], i);

    mergeSort(items, 0, n - 1, ans);
    return Arrays.stream(ans).boxed().collect(Collectors.toList());
  }

  private record Item(int num, int index) {}

  private void mergeSort(Item[] items, int l, int r, int[] ans) {
    if (l >= r)
      return;

    final int m = (l + r) / 2;
    mergeSort(items, l, m, ans);
    mergeSort(items, m + 1, r, ans);
    merge(items, l, m, r, ans);
  }

  private void merge(Item[] items, int l, int m, int r, int[] ans) {
    Item[] sorted = new Item[r - l + 1];
    int k = 0;          // sorted's index
    int i = l;          // left's index
    int j = m + 1;      // right's index
    int rightCount = 0; // the number of `nums` < items[i].num

    while (i <= m && j <= r)
      if (items[i].num > items[j].num) {
        ++rightCount;
        sorted[k++] = items[j++];
      } else {
        ans[items[i].index] += rightCount;
        sorted[k++] = items[i++];
      }

    // Put the possible remaining left part into the sorted array.
    while (i <= m) {
      ans[items[i].index] += rightCount;
      sorted[k++] = items[i++];
    }

    // Put the possible remaining right part into the sorted array.
    while (j <= r)
      sorted[k++] = items[j++];

    System.arraycopy(sorted, 0, items, l, sorted.length);
  }
}
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
from dataclasses import dataclass


@dataclass
class Item:
  num: int = 0
  index: int = 0


class Solution:
  def countSmaller(self, nums: list[int]) -> list[int]:
    n = len(nums)
    ans = [0] * n
    items = [Item(num, i) for i, num in enumerate(nums)]

    self._mergeSort(items, 0, n - 1, ans)
    return ans

  def _mergeSort(
      self,
      items: list[Item],
      l: int,
      r: int,
      ans: list[int],
  ) -> None:
    if l >= r:
      return

    m = (l + r) // 2
    self._mergeSort(items, l, m, ans)
    self._mergeSort(items, m + 1, r, ans)
    self._merge(items, l, m, r, ans)

  def _merge(
      self,
      items: list[Item],
      l: int,
      m: int,
      r: int,
      ans: list[int],
  ) -> None:
    sorted = [Item()] * (r - l + 1)
    k = 0  # sorted's index
    i = l  # left's index
    j = m + 1  # right's index
    rightCount = 0  # the number of numbers < items[i].num

    while i <= m and j <= r:
      if items[i].num > items[j].num:
        rightCount += 1
        sorted[k] = items[j]
        k += 1
        j += 1
      else:
        ans[items[i].index] += rightCount
        sorted[k] = items[i]
        k += 1
        i += 1

    # Put the possible remaining left part into the sorted array.
    while i <= m:
      ans[items[i].index] += rightCount
      sorted[k] = items[i]
      k += 1
      i += 1

    # Put the possible remaining right part into the sorted array.
    while j <= r:
      sorted[k] = items[j]
      k += 1
      j += 1

    items[l:l + len(sorted)] = sorted