Skip to content

3235. Check if the Rectangle Corner Is Reachable

  • Time: $O(n^2\log^* n)$
  • Space: $O(n)$
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
class UnionFind {
 public:
  UnionFind(int n) : id(n), rank(n) {
    iota(id.begin(), id.end(), 0);
  }

  void unionByRank(int u, int v) {
    const int i = find(u);
    const int j = find(v);
    if (i == j)
      return;
    if (rank[i] < rank[j]) {
      id[i] = j;
    } else if (rank[i] > rank[j]) {
      id[j] = i;
    } else {
      id[i] = j;
      ++rank[j];
    }
  }

  int find(int u) {
    return id[u] == u ? u : id[u] = find(id[u]);
  }

 private:
  vector<int> id;
  vector<int> rank;
};

class Solution {
 public:
  bool canReachCorner(int X, int Y, vector<vector<int>>& circles) {
    const int n = circles.size();
    // Add two virtual nodes, where node n represents (0, 0) and node n + 1
    // represents (X, Y).
    UnionFind uf(n + 2);

    // Iterate through each circle.
    for (int i = 0; i < n; ++i) {
      const int x = circles[i][0];
      const int y = circles[i][1];
      const int r = circles[i][2];
      // Union the current circle with the node (0, 0) if the circle overlaps
      // with the left or top edges.
      if (x - r <= 0 || y + r >= Y)
        uf.unionByRank(i, n);
      // Union the current circle with the node (X, Y) if the circle overlaps
      // with the right or bottom edges.
      if (x + r >= X || y - r <= 0)
        uf.unionByRank(i, n + 1);
      // Union the current circle with previous circles if they overlap.
      for (int j = 0; j < i; ++j) {
        const int x2 = circles[j][0];
        const int y2 = circles[j][1];
        const int r2 = circles[j][2];
        if (static_cast<long>(x - x2) * (x - x2) +
                static_cast<long>(y - y2) * (y - y2) <=
            static_cast<long>(r + r2) * (r + r2))
          uf.unionByRank(i, j);
      }
    }

    // If nodes (0, 0) and (X, Y) are in the same union set, that means there's
    // a path of overlapping circles that connects the left or top edges to the
    // right or bottom edges, implying that (0, 0) cannot reach (X, Y).
    return uf.find(n) != uf.find(n + 1);
  }
};
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
class UnionFind {
  public UnionFind(int n) {
    id = new int[n];
    rank = new int[n];
    for (int i = 0; i < n; ++i)
      id[i] = i;
  }

  public void unionByRank(int u, int v) {
    final int i = find(u);
    final int j = find(v);
    if (i == j)
      return;
    if (rank[i] < rank[j]) {
      id[i] = j;
    } else if (rank[i] > rank[j]) {
      id[j] = i;
    } else {
      id[i] = j;
      ++rank[j];
    }
  }

  public int find(int u) {
    return id[u] == u ? u : (id[u] = find(id[u]));
  }

  private int[] id;
  private int[] rank;
}

class Solution {
  public boolean canReachCorner(int X, int Y, int[][] circles) {
    final int n = circles.length;
    // Add two virtual nodes, where node n represents (0, 0) and node n + 1
    // represents (X, Y).
    UnionFind uf = new UnionFind(n + 2);

    // Iterate through each circle.
    for (int i = 0; i < n; ++i) {
      final int x = circles[i][0];
      final int y = circles[i][1];
      final int r = circles[i][2];
      // Union the current circle with the node (0, 0) if the circle overlaps
      // with the left or top edges.
      if (x - r <= 0 || y + r >= Y)
        uf.unionByRank(i, n);
      // Union the current circle with the node (X, Y) if the circle overlaps
      // with the right or bottom edges.
      if (x + r >= X || y - r <= 0)
        uf.unionByRank(i, n + 1);
      // Union the current circle with previous circles if they overlap.
      for (int j = 0; j < i; j++) {
        final int x2 = circles[j][0];
        final int y2 = circles[j][1];
        final int r2 = circles[j][2];
        if ((long) (x - x2) * (x - x2) + (long) (y - y2) * (y - y2) <= (long) (r + r2) * (r + r2))
          uf.unionByRank(i, j);
      }
    }

    // If nodes (0, 0) and (X, Y) are in the same union set, that means there's
    // a path of overlapping circles that connects the left or top edges to the
    // right or bottom edges, implying that (0, 0) cannot reach (X, Y).
    return uf.find(n) != uf.find(n + 1);
  }
}
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
class UnionFind:
  def __init__(self, n: int):
    self.id = list(range(n))
    self.rank = [0] * n

  def unionByRank(self, u: int, v: int) -> None:
    i = self.find(u)
    j = self.find(v)
    if i == j:
      return
    if self.rank[i] < self.rank[j]:
      self.id[i] = j
    elif self.rank[i] > self.rank[j]:
      self.id[j] = i
    else:
      self.id[i] = j
      self.rank[j] += 1

  def find(self, u: int) -> int:
    if self.id[u] != u:
      self.id[u] = self.find(self.id[u])
    return self.id[u]


class Solution:
  def canReachCorner(self, X: int, Y: int, circles: list[list[int]]) -> bool:
    n = len(circles)
    # Add two virtual nodes, where node n represents (0, 0) and node n + 1
    # represents (X, Y).
    uf = UnionFind(n + 2)

    # Iterate through each circle.
    for i, (x, y, r) in enumerate(circles):
      # Union the current circle with the node (0, 0) if the circle overlaps
      # with the left or top edges.
      if x - r <= 0 or y + r >= Y:
        uf.unionByRank(i, n)
      # Union the current circle with the node (X, Y) if the circle overlaps
      # with the right or bottom edges.
      if x + r >= X or y - r <= 0:
        uf.unionByRank(i, n + 1)
      # Union the current circle with previous circles if they overlap.
      for j in range(i):
        x2, y2, r2 = circles[j]
        if (x - x2)**2 + (y - y2)**2 <= (r + r2)**2:
          uf.unionByRank(i, j)

    # If nodes (0, 0) and (X, Y) are in the same union set, that means there's
    # a path of overlapping circles that connects the left or top edges to the
    # right or bottom edges, implying that (0, 0) cannot reach (X, Y).
    return uf.find(n) != uf.find(n + 1)