Skip to content

3245. Alternating Groups III 👍

  • Time: $O(n + q\log n)$
  • Space: $O(n + q)$
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
struct SegmentTree {
 public:
  explicit SegmentTree(int n)
      : n(n), treeIntervalCounts(4 * n), treeIntervalLengths(4 * n) {}

  // Adds val to intervalCounts[i] and updates intervalLengths[i] accordingly.
  void add(int i, int val) {
    add(0, 0, n - 1, i, val);
  }

  // Returns sum(intervalCounts[i..n - 1]).
  int queryIntervalCounts(int i) const {
    return query(treeIntervalCounts, 0, 0, n - 1, i, n - 1);
  }

  // Returns sum(intervalLengths[i..n - 1]).
  int queryIntervalLengths(int i) const {
    return query(treeIntervalLengths, 0, 0, n - 1, i, n - 1);
  }

 private:
  const int n;
  vector<int> treeIntervalCounts;
  vector<int> treeIntervalLengths;

  void add(int treeIndex, int lo, int hi, int i, int val) {
    if (lo == hi) {
      treeIntervalCounts[treeIndex] += val;
      treeIntervalLengths[treeIndex] = treeIntervalCounts[treeIndex] * i;
      return;
    }
    const int mid = (lo + hi) / 2;
    if (i <= mid)
      add(2 * treeIndex + 1, lo, mid, i, val);
    else
      add(2 * treeIndex + 2, mid + 1, hi, i, val);
    treeIntervalCounts[treeIndex] =
        merge(treeIntervalCounts[2 * treeIndex + 1],
              treeIntervalCounts[2 * treeIndex + 2]);
    treeIntervalLengths[treeIndex] =
        merge(treeIntervalLengths[2 * treeIndex + 1],
              treeIntervalLengths[2 * treeIndex + 2]);
  }

  int query(const vector<int>& tree, int treeIndex, int lo, int hi, int i,
            int j) const {
    if (i <= lo && hi <= j)  // [lo, hi] lies completely inside [i, j].
      return tree[treeIndex];
    if (j < lo || hi < i)  // [lo, hi] lies completely outside [i, j].
      return 0;
    const int mid = (lo + hi) / 2;
    return merge(query(tree, treeIndex * 2 + 1, lo, mid, i, j),
                 query(tree, treeIndex * 2 + 2, mid + 1, hi, i, j));
  }

  int merge(int left, int right) const {
    return left + right;
  }
};

class Solution {
 public:
  vector<int> numberOfAlternatingGroups(vector<int>& colors,
                                        vector<vector<int>>& queries) {
    const int n = colors.size();
    vector<int> ans;
    vector<int> arr{colors};
    SegmentTree tree(2 * n - 1);
    set<pair<int, int>> intervals;

    arr.insert(arr.end(), colors.begin(), colors.end());

    // Insert all intervals, each of them is an alternating sequence.
    int start = 0;
    for (int i = 1; i < 2 * n - 1; ++i)
      if (arr[i] == arr[i - 1]) {
        insert(intervals, {start, i - 1}, tree, n);
        start = i;
      }
    insert(intervals, {start, 2 * n - 2}, tree, n);

    for (const vector<int>& query : queries)
      if (query[0] == 1) {
        const int sz = query[1];
        const pair<int, int>& intervalWithN = findInterval(intervals, n);
        const int numAlternatingGroups =
            getNumAlternatingGroups(sz, intervalWithN, tree, n);
        ans.push_back(numAlternatingGroups);
      } else {
        const int index = query[1];
        const int color = query[2];
        if (arr[index] == color)
          continue;
        update(intervals, index, color, arr, tree, n);
        if (index < n - 1)
          update(intervals, index + n, color, arr, tree, n);
      }

    return ans;
  }

 private:
  // Returns the number of alternating groups of size `sz`.
  int getNumAlternatingGroups(int sz, const pair<int, int>& intervalWithN,
                              const SegmentTree& tree, int n) {
    const int numIntervals = tree.queryIntervalCounts(sz);
    const int sumIntervals = tree.queryIntervalLengths(sz);
    // The number of alternating groups for an interval is |interval| - sz + 1.
    // Therefore, the number of alternating groups for all intervals is
    //   sum(|intervals[i]| - sz + 1)
    // = sum(|intervals[i]) - numIntervals * sz + numIntervals
    const int numAlternatingGroups =
        sumIntervals - numIntervals * sz + numIntervals;
    // We need to check if the interval (l, r) contains n, and if it does, we
    // need to adjust the number of alternating groups to avoid duplicates.
    const auto& [l, r] = intervalWithN;
    // 1. For an interval with l >= n, it wasn't being considered in `insert`
    // and `remove`.
    // 2. For an interval with r - l + 1 < sz, it's impossible to form a group
    // of size `sz`.
    if (l >= n || r - l + 1 < sz)
      return numAlternatingGroups;
    // 3. For an interval with r >= n, it's possible to duplicately count the
    // groups starting from n.
    if (r >= n) {  // l < n && r - 1 + 1 >= sz
      // Groups starting from [l..n) are non-duplicately counted.
      const int nonDuplicateGroups = n - l;
      // The number of groups of size `sz` in the interval [l..r].
      const int numGroups = (r - l + 1) - sz + 1;
      return numAlternatingGroups - max(0, numGroups - nonDuplicateGroups);
    }
    return numAlternatingGroups;
  }

  // Inserts an interval into `intervals` and updates `tree`.
  void insert(set<pair<int, int>>& intervals, const pair<int, int>& interval,
              SegmentTree& tree, int n) {
    intervals.insert(interval);
    if (interval.first < n)
      tree.add(interval.second - interval.first + 1, 1);
  }

  // Removes an interval from `intervals` and updates `tree`.
  void remove(set<pair<int, int>>& intervals, const pair<int, int>& interval,
              SegmentTree& tree, int n) {
    intervals.erase(interval);
    if (interval.first < n)
      tree.add(interval.second - interval.first + 1, -1);
  }

  // Returns the interval containing the target.
  pair<int, int> findInterval(const set<pair<int, int>>& intervals,
                              int target) {
    auto it = intervals.upper_bound({target, INT_MAX});
    return (*--it);
  }

  // Updates the color of the index-th element in `arr` and updates `intervals`
  // and `tree`.
  void update(set<pair<int, int>>& intervals, int index, int color,
              vector<int>& arr, SegmentTree& tree, int n) {
    arr[index] = color;

    const pair<int, int> intervalWithIndex = findInterval(intervals, index);
    remove(intervals, intervalWithIndex, tree, n);
    auto [start, end] = intervalWithIndex;

    // interval [s..i - 1|i|i + 1..e]
    //    index           ^
    if (start < index && index < end) {
      insert(intervals, {start, index - 1}, tree, n);
      insert(intervals, {index, index}, tree, n);
      insert(intervals, {index + 1, end}, tree, n);
      return;
    }

    // interval [s|s + 1..e]
    //    index  ^
    if (start == index && index < end)
      insert(intervals, {start + 1, end}, tree, n);

    // interval [s..e - 1|e]
    //    index           ^
    if (start < index && index == end)
      insert(intervals, {start, end - 1}, tree, n);

    start = index;
    end = index;
    vector<pair<int, int>> intervalsToRemove;

    auto it = intervals.upper_bound({index, INT_MAX});

    for (auto lit = it; lit != intervals.begin();) {
      --lit;
      if (arr[lit->second] == arr[start])  // [..lit->second|start..]
        break;
      intervalsToRemove.push_back(*lit);
      start = lit->first;
    }

    for (auto rit = it; rit != intervals.end(); ++rit) {
      if (arr[rit->first] == arr[end])  // [..end|rit->first..]
        break;
      intervalsToRemove.push_back(*rit);
      end = rit->second;
    }

    for (const pair<int, int>& interval : intervalsToRemove)
      remove(intervals, interval, tree, n);

    insert(intervals, {start, end}, tree, n);
  }
};