class Solution {
public:
vector<int> getFinalState(vector<int>& nums, int k, int multiplier) {
if (multiplier == 1)
return nums;
const int n = nums.size();
const int maxNum = ranges::max(nums);
vector<int> ans(n);
using P = pair<int, int>; // (nums[i], i)
priority_queue<P, vector<P>, greater<>> minHeap;
for (int i = 0; i < n; ++i)
minHeap.emplace(nums[i], i);
// Keep multiplying the minimum number as close as possible to the maximum
// number in the array. After that, stop multiplying the minimum number
// because it will be greater than the maximum number in the array and break
// the circularity.
while (k > 0 &&
static_cast<long>(minHeap.top().first) * multiplier <= maxNum) {
const auto [num, i] = minHeap.top();
minHeap.pop();
minHeap.emplace(num * multiplier, i);
--k;
}
vector<pair<int, int>> sortedIndexedNums;
while (!minHeap.empty())
sortedIndexedNums.push_back(minHeap.top()), minHeap.pop();
const int multipliesPerNum = k / n;
const int remainingK = k % n;
// Evenly distribute the remaining multiplications to each number by using
// fast exponentiation.
for (auto& [num, _] : sortedIndexedNums)
num = (num * modPow(multiplier, multipliesPerNum)) % kMod;
// Distribute the remaining multiplications to the minimum `remainingK`
// numbers.
for (int i = 0; i < remainingK; ++i)
sortedIndexedNums[i].first =
(static_cast<long>(sortedIndexedNums[i].first) * multiplier % kMod);
for (const auto& [num, i] : sortedIndexedNums)
ans[i] = num;
return ans;
}
private:
static constexpr int kMod = 1'000'000'007;
long modPow(long x, long n) {
if (n == 0)
return 1;
if (n % 2 == 1)
return x * modPow(x, n - 1) % kMod;
return modPow(x * x % kMod, n / 2);
}
};