class Solution {
public:
int maxPathLength(vector<vector<int>>& coordinates, int k) {
const int xk = coordinates[k][0];
const int yk = coordinates[k][1];
vector<pair<int, int>> leftCoordinates;
vector<pair<int, int>> rightCoordinates;
for (const vector<int>& coordinate : coordinates) {
const int x = coordinate[0];
const int y = coordinate[1];
if (x < xk && y < yk)
leftCoordinates.emplace_back(x, y);
else if (x > xk && y > yk)
rightCoordinates.emplace_back(x, y);
}
return 1 + lengthOfLIS(leftCoordinates) + lengthOfLIS(rightCoordinates);
}
private:
// Similar to 300. Longest Increasing Subsequence
int lengthOfLIS(vector<pair<int, int>>& coordinates) {
ranges::sort(coordinates, ranges::less{},
[](const pair<int, int>& coordinate) {
const auto& [x, y] = coordinate;
return pair<int, int>{x, -y};
});
// tails[i] := the minimum tail of all the increasing subsequences having
// length i + 1
vector<int> tails;
for (const auto& [_, y] : coordinates)
if (tails.empty() || y > tails.back())
tails.push_back(y);
else
tails[firstGreaterEqual(tails, y)] = y;
return tails.size();
}
int firstGreaterEqual(const vector<int>& arr, int target) {
return ranges::lower_bound(arr, target) - arr.begin();
}
};