class Solution:
def findAnswer(self, parent: list[int], s: str) -> list[bool]:
n = len(parent)
tree = [[] for _ in parent]
start = [0] * n # start[i] := the start index of `dfsStr` of node i
end = [0] * n # end[i] := the end index of `dfsStr` of node i
dfsStr = []
for i in range(1, n):
tree[parent[i]].append(i)
self._dfs(tree, 0, 0, s, start, end, dfsStr)
t = '#'.join('@' + ''.join(dfsStr) + '$')
p = self._manacher(t)
return [self._isPalindrome(s, e, p)
for s, e in zip(start, end)]
def _dfs(
self,
tree: list[list[int]],
u: int,
index: int,
s: str,
start: list[int],
end: list[int],
dfsStr: list[str]
) -> int:
"""Returns the start index of the "DFS string" of u's next node."""
start[u] = index
for v in tree[u]:
index = self._dfs(tree, v, index, s, start, end, dfsStr)
end[u] = index
dfsStr.append(s[u])
return index + 1
def _manacher(self, t: str) -> list[int]:
"""
Returns an array `p` s.t. `p[i]` is the length of the longest palindrome
centered at `t[i]`, where `t` is a string with delimiters and sentinels.
"""
p = [0] * len(t)
center = 0
for i in range(1, len(t) - 1):
rightBoundary = center + p[center]
mirrorIndex = center - (i - center)
if rightBoundary > i:
p[i] = min(rightBoundary - i, p[mirrorIndex])
# Try to expand the palindrome centered at i.
while t[i + 1 + p[i]] == t[i - 1 - p[i]]:
p[i] += 1
# If a palindrome centered at i expands past `rightBoundary`, adjust
# the center based on the expanded palindrome.
if i + p[i] > rightBoundary:
center = i
return p
def _isPalindrome(self, s: int, e: int, p: list[int]) -> bool:
"""
Returns true if `dfsStr[s..e]` is a palindrome by using the precomputed
array `p` from the Manacher's algorithm.
The precomputed array `p` is based on the string `t` with delimiters and
sentinels. Let `t = '#'.join('@' + dfsStr + '$')`. Then, the center of
`dfsStr` maps to `t[s + e + 2]` since `dfsStr[s]` maps to `t[2 * s + 2]`
and `dfsStr[e]` maps to `t[2 * e + 2]`. So, the center of `dfsStr` is
`t[(2 * s + 2 + 2 * e + 2) / 2] = t[s + e + 2]`.
"""
length = e - s + 1
center = s + e + 2
return p[center] >= length