class Solution {
public:
int countKReducibleNumbers(string s, int k) {
vector<vector<vector<int>>> mem(
s.length(), vector<vector<int>>(s.length() + 1, vector<int>(2, -1)));
return count(s, 0, 0, true, k, getOps(s), mem) - 1; // - 0
}
private:
static constexpr int kMod = 1'000'000'007;
// Returns the number of positive integers less than n that are k-reducible,
// considering the i-th digit, where `setBits` is the number of set bits in
// the current number, and `tight` indicates if the current digit is
// tightly bound.
int count(const string& s, int i, int setBits, bool tight, int k,
const vector<int>& ops, vector<vector<vector<int>>>& mem) {
if (i == s.length())
return (ops[setBits] < k && !tight) ? 1 : 0;
if (mem[i][setBits][tight] != -1)
return mem[i][setBits][tight];
int res = 0;
const int maxDigit = tight ? s[i] - '0' : 1;
for (int d = 0; d <= maxDigit; ++d) {
const bool nextTight = tight && (d == maxDigit);
res += count(s, i + 1, setBits + d, nextTight, k, ops, mem);
res %= kMod;
}
return mem[i][setBits][tight] = res;
};
// Returns the number of operations to reduce a number to 0.
vector<int> getOps(string& s) {
vector<int> ops(s.length() + 1);
for (int num = 2; num <= s.length(); ++num)
ops[num] = 1 + ops[__builtin_popcount(num)];
return ops;
}
};