class Solution {
public:
long long maximizeSumOfWeights(vector<vector<int>>& edges, int k) {
const int n = edges.size() + 1;
vector<vector<pair<int, int>>> graph(n);
for (const vector<int>& edge : edges) {
const int u = edge[0];
const int v = edge[1];
const int w = edge[2];
graph[u].emplace_back(v, w);
graph[v].emplace_back(u, w);
}
return dfs(graph, 0, -1, k).second;
}
// Returns
// (the weight sum of the subtree rooted at u with at most k - 1 children,
// the weight sum of the subtree rooted at u with at most k children).
pair<long, long> dfs(const vector<vector<pair<int, int>>>& graph, int u,
int prev, int k) {
long weightSum = 0;
priority_queue<long> diffs;
for (const auto& [v, w] : graph[u]) {
if (v == prev)
continue;
const auto [subK1, subK] = dfs(graph, v, u, k);
weightSum += subK;
// If picking (u, v) makes the sum larger, we should pick it.
diffs.push(max(0L, subK1 - subK + w));
}
long topK1 = 0;
long topK = 0;
for (int i = 0; i < k && !diffs.empty(); ++i) {
if (i < k - 1)
topK1 += diffs.top();
topK += diffs.top();
diffs.pop();
}
return {weightSum + topK1, weightSum + topK};
};
};