class Solution {
public:
int findMinimumTime(vector<int>& strength) {
vector<vector<int>> costs;
for (int turn = 1; turn <= strength.size(); ++turn) {
vector<int> cost;
for (const int s : strength)
cost.push_back((s + turn - 1) / turn);
costs.push_back(cost);
}
return hungarian(costs).back();
}
private:
// Updates the currentMinimum if potentialMinimum is smaller and returns true.
bool updateMinimum(int& currentMinimum, const int& potentialMinimum) {
if (potentialMinimum < currentMinimum) {
currentMinimum = potentialMinimum;
return true;
}
return false;
}
// Returns an array `res` of length n (costs.length), with `res[i]` equaling
// the minimum cost to assign the first (i + 1) turns to the first (i + 1)
// locks using Hungarian algorithm, where costs[i][j] is the energy required
// to break j-th lock in i-th turn.
//
// https://en.wikipedia.org/wiki/Hungarian_algorithm
vector<int> hungarian(const vector<vector<int>>& costs) {
const int numLocks = costs.size();
vector<int> res;
vector<int> lockAssignments(numLocks + 1, -1);
vector<int> turnPotentials(numLocks);
vector<int> lockPotentials(numLocks + 1);
for (int currentTurn = 0; currentTurn < numLocks; ++currentTurn) {
int currentLock = numLocks;
lockAssignments[currentLock] = currentTurn;
vector<int> minReducedCosts(numLocks + 1, INT_MAX);
vector<int> previousLockAssignments(numLocks + 1, -1);
vector<bool> locksInOptimalPath(numLocks + 1);
while (lockAssignments[currentLock] != -1) {
locksInOptimalPath[currentLock] = true;
const int assignedTurn = lockAssignments[currentLock];
int minCostDelta = INT_MAX;
int nextLock;
for (int lock = 0; lock < numLocks; ++lock)
if (!locksInOptimalPath[lock]) {
const int reducedCost = costs[assignedTurn][lock] -
turnPotentials[assignedTurn] -
lockPotentials[lock];
if (updateMinimum(minReducedCosts[lock], reducedCost))
previousLockAssignments[lock] = currentLock;
if (updateMinimum(minCostDelta, minReducedCosts[lock]))
nextLock = lock;
}
for (int lock = 0; lock <= numLocks; ++lock)
if (locksInOptimalPath[lock]) {
turnPotentials[lockAssignments[lock]] += minCostDelta;
lockPotentials[lock] -= minCostDelta;
} else {
minReducedCosts[lock] -= minCostDelta;
}
currentLock = nextLock;
}
for (int lock; currentLock != numLocks; currentLock = lock)
lockAssignments[currentLock] =
lockAssignments[lock = previousLockAssignments[currentLock]];
res.push_back(-lockPotentials[numLocks]);
}
return res;
}
};