Skip to content

3405. Count the Number of Arrays with K Matching Adjacent Elements 👍

  • Time: $O(n)$
  • Space: $O(n)$
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
class Solution {
 public:
  int countGoodArrays(int n, int m, int k) {
    const auto [fact, invFact] = getFactAndInvFact(n);
    return m * modPow(m - 1, n - k - 1) % kMod * nCk(n - 1, k, fact, invFact) %
           kMod;
  }

 private:
  static constexpr int kMod = 1'000'000'007;

  long modPow(long x, long n) {
    if (n == 0)
      return 1;
    if (n % 2 == 1)
      return x * modPow(x % kMod, (n - 1)) % kMod;
    return modPow(x * x % kMod, (n / 2)) % kMod;
  }

  pair<vector<long>, vector<long>> getFactAndInvFact(int n) {
    vector<long> fact(n + 1);
    vector<long> invFact(n + 1);
    vector<long> inv(n + 1);
    fact[0] = invFact[0] = 1;
    inv[0] = inv[1] = 1;
    for (int i = 1; i <= n; ++i) {
      if (i >= 2)
        inv[i] = kMod - kMod / i * inv[kMod % i] % kMod;
      fact[i] = fact[i - 1] * i % kMod;
      invFact[i] = invFact[i - 1] * inv[i] % kMod;
    }
    return {fact, invFact};
  }

  int nCk(int n, int k, const vector<long>& fact, const vector<long>& invFact) {
    return fact[n] * invFact[k] % kMod * invFact[n - k] % kMod;
  }
};
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
class Solution {
  public int countGoodArrays(int n, int m, int k) {
    final long[][] factAndInvFact = getFactAndInvFact(n);
    final long[] fact = factAndInvFact[0];
    final long[] invFact = factAndInvFact[1];
    return (int) (m * modPow(m - 1, n - k - 1) % MOD * nCk(n - 1, k, fact, invFact) % MOD);
  }

  private static final int MOD = 1_000_000_007;

  private long modPow(long x, long n) {
    if (n == 0)
      return 1;
    if (n % 2 == 1)
      return x * modPow(x, n - 1) % MOD;
    return modPow(x * x % MOD, n / 2);
  }

  private long[][] getFactAndInvFact(int n) {
    long[] fact = new long[n + 1];
    long[] invFact = new long[n + 1];
    long[] inv = new long[n + 1];
    fact[0] = invFact[0] = 1;
    inv[0] = inv[1] = 1;
    for (int i = 1; i <= n; ++i) {
      if (i >= 2)
        inv[i] = MOD - MOD / i * inv[MOD % i] % MOD;
      fact[i] = fact[i - 1] * i % MOD;
      invFact[i] = invFact[i - 1] * inv[i] % MOD;
    }
    return new long[][] {fact, invFact};
  }

  private int nCk(int n, int k, long[] fact, long[] invFact) {
    return (int) (fact[n] * invFact[k] % MOD * invFact[n - k] % MOD);
  }
}
1
2
3
4
class Solution:
  def countGoodArrays(self, n: int, m: int, k: int) -> int:
    MOD = 1_000_000_007
    return m * pow(m - 1, n - k - 1, MOD) * math.comb(n - 1, k) % MOD