class Solution {
public:
int distanceSum(int m, int n, int k) {
// For each distance d, where 1 < d < m, there are `m - d` ways to choose
// the two columns that the two pieces are on. For each of the two pieces,
// there are `n` ways to choose the row that the piece is on.
// Therefore, the contribution of row differences is
// sum(d * (m - d) * n^2), where 1 < d <= m - 1
// = n^2 * sum(d * m - d^2)
// = n^2 * (d * m * (m - 1) / 2 - m * (m - 1) * (2m - 1) / 6)
// = n^2 * (m^3 - m) / 6
// Similarly, the contribution of column differences is
// m^2 * (n^3 - n) / 6
const int rowContrib = 1L * n * n * (1L * m * m * m - m) / 6 % kMod;
const int colContrib = 1L * m * m * (1L * n * n * n - n) / 6 % kMod;
return (rowContrib + colContrib) * nCk(m * n - 2, k - 2) % kMod;
}
private:
static constexpr int kMod = 1'000'000'007;
long nCk(int n, int k) {
long res = 1;
for (int i = 1; i <= k; ++i)
// By Fermat's little theorem.
res = res * (n - i + 1) % kMod * modPow(i, kMod - 2) % kMod;
return res;
}
long modPow(long x, long n) {
if (n == 0)
return 1;
if (n % 2 == 1)
return x * modPow(x % kMod, (n - 1)) % kMod;
return modPow(x * x % kMod, (n / 2)) % kMod;
}
};