Skip to content

3428. Maximum and Minimum Sums of at Most Size K Subsequences 👍

  • Time: $O(nk)$
  • Space: $O(nk)$
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
class Solution {
 public:
  int minMaxSums(vector<int>& nums, int k) {
    // In a sorted array, nums[i] will be
    //   1. The maximum for subsequences formed by nums[0..i].
    //   2. The minimum for subsequences formed by nums[i..n - 1].
    //
    // The number of times nums[i] is the maximum is the same as the number of
    // times nums[n - 1 - i] is the minimum, due to the symmetry in subsequences
    // derived from the sorted order.
    //
    // To calculate the contribution of nums[i], we need to find the number of
    // ways to select at most (k - 1) elements from the range of indices where
    // nums[i] is the smallest or nums[n - 1 - i] is the largest.
    const int n = nums.size();
    const vector<vector<int>> comb = getComb(n, k - 1);
    long ans = 0;

    ranges::sort(nums);

    // i := available numbers from the left of nums[i] or
    //      available numbers from the right of nums[n - 1 - i]
    for (int i = 0; i < n; ++i) {
      int count = 0;
      for (int j = 0; j <= k - 1; ++j)  // selected numbers
        count = (count + comb[i][j]) % kMod;
      ans += static_cast<long>(nums[i]) * count;
      ans += static_cast<long>(nums[n - 1 - i]) * count;
      ans %= kMod;
    }

    return ans;
  }

 private:
  static constexpr int kMod = 1'000'000'007;

  // C(n, k) = C(n - 1, k) + C(n - 1, k - 1)
  vector<vector<int>> getComb(int n, int k) {
    vector<vector<int>> comb(n + 1, vector<int>(k + 1));
    for (int i = 0; i <= n; ++i)
      comb[i][0] = 1;
    for (int i = 1; i <= n; ++i)
      for (int j = 1; j <= k; ++j)
        comb[i][j] = (comb[i - 1][j] + comb[i - 1][j - 1]) % kMod;
    return comb;
  }
};
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
class Solution {
  public int minMaxSums(int[] nums, int k) {
    // In a sorted array, nums[i] will be
    //   1. The maximum for subsequences formed by nums[0..i].
    //   2. The minimum for subsequences formed by nums[i..n - 1].
    //
    // The number of times nums[i] is the maximum is the same as the number of
    // times nums[n - 1 - i] is the minimum, due to the symmetry in subsequences
    // derived from the sorted order.
    //
    // To calculate the contribution of nums[i], we need to find the number of
    // ways to select at most (k - 1) elements from the range of indices where
    // nums[i] is the smallest or nums[n - 1 - i] is the largest.
    final int n = nums.length;
    final int[][] comb = getComb(n, k - 1);
    long ans = 0;

    Arrays.sort(nums);

    // i: available numbers from the left of nums[i] or
    //    available numbers from the right of nums[n - 1 - i]
    for (int i = 0; i < n; ++i) {
      int count = 0;
      for (int j = 0; j <= k - 1; ++j) // selected numbers
        count = (count + comb[i][j]) % MOD;
      ans += (long) nums[i] * count;
      ans += (long) nums[n - 1 - i] * count;
      ans %= MOD;
    }

    return (int) ans;
  }

  private static final int MOD = 1_000_000_007;

  // C(n, k) = C(n - 1, k) + C(n - 1, k - 1)
  private int[][] getComb(int n, int k) {
    int[][] comb = new int[n + 1][k + 1];
    for (int i = 0; i <= n; ++i)
      comb[i][0] = 1;
    for (int i = 1; i <= n; ++i)
      for (int j = 1; j <= k; ++j)
        comb[i][j] = (comb[i - 1][j] + comb[i - 1][j - 1]) % MOD;
    return comb;
  }
}
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
class Solution:
  def minMaxSums(self, nums: list[int], k: int) -> int:
    # In a sorted array, nums[i] will be
    #   1. The maximum for subsequences formed by nums[0..i].
    #   2. The minimum for subsequences formed by nums[i..n - 1].
    #
    # The number of times nums[i] is the maximum is the same as the number of
    # times nums[n - 1 - i] is the minimum, due to the symmetry in subsequences
    # derived from the sorted order.
    #
    # To calculate the contribution of nums[i], we need to find the number of
    # ways to select at most (k - 1) elements from the range of indices where
    # nums[i] is the smallest or nums[n - 1 - i] is the largest.
    MOD = 1_000_000_007
    n = len(nums)

    def getComb(n: int, k: int) -> list[list[int]]:
      """C(n, k) = C(n - 1, k) + C(n - 1, k - 1)"""
      comb = [[0] * (k + 1) for _ in range(n + 1)]
      for i in range(n + 1):
        comb[i][0] = 1
      for i in range(1, n + 1):
        for j in range(1, k + 1):
          comb[i][j] = (comb[i - 1][j] + comb[i - 1][j - 1]) % MOD
      return comb

    comb = getComb(n, k - 1)
    ans = 0

    nums.sort()

    # i: available numbers from the left of nums[i] or
    #    available numbers from the right of nums[-1 - i]
    for i in range(n):
      count = 0
      for j in range(k):  # selected numbers
        count = (count + comb[i][j]) % MOD
      ans += nums[i] * count
      ans += nums[-1 - i] * count
      ans %= MOD

    return ans