class Solution {
// Similar to 2104. Sum of Subarray Ranges
public long minMaxSubarraySum(int[] nums, int k) {
Pair<int[], int[]> gt = getPrevNext(nums, (a, b) -> a < b);
Pair<int[], int[]> lt = getPrevNext(nums, (a, b) -> a > b);
int[] prevGt = gt.getKey();
int[] nextGt = gt.getValue();
int[] prevLt = lt.getKey();
int[] nextLt = lt.getValue();
return subarraySum(nums, k, prevGt, nextGt) + subarraySum(nums, k, prevLt, nextLt);
}
// Returns the sum of all subarrays with a size <= k, The `prev` and `next`
// arrays are used to store the indices of the nearest numbers that are
// smaller or larger than the current number, respectively.
private long subarraySum(int[] nums, int k, int[] prev, int[] next) {
long res = 0;
for (int i = 0; i < nums.length; ++i) {
final int l = Math.min(i - prev[i], k);
final int r = Math.min(next[i] - i, k);
final int extra = Math.max(0, l + r - 1 - k);
res += (long) nums[i] * (l * r - extra * (extra + 1) / 2);
}
return res;
}
// Returns `prev` and `next`, that store the indices of the nearest numbers
// that are smaller or larger than the current number depending on `op`.
private Pair<int[], int[]> getPrevNext(int[] nums, BiFunction<Integer, Integer, Boolean> op) {
final int n = nums.length;
int[] prev = new int[n];
int[] next = new int[n];
Arrays.fill(prev, -1);
Arrays.fill(next, n);
Deque<Integer> stack = new ArrayDeque<>();
for (int i = 0; i < n; ++i) {
while (!stack.isEmpty() && op.apply(nums[stack.peek()], nums[i]))
next[stack.pop()] = i;
if (!stack.isEmpty())
prev[i] = stack.peek();
stack.push(i);
}
return new Pair<>(prev, next);
}
}