1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140 | enum State { INIT, VISITING, VISITED }
class Solution {
public List<List<Integer>> supersequences(String[] words) {
List<List<Integer>> ans = new ArrayList<>();
List<int[]> edges = getEdges(words);
List<Integer> nodes = getNodes(edges);
int[] letterToIndex = getLetterToIndex(nodes);
List<Integer>[] graph = new List[nodes.size()];
for (int i = 0; i < nodes.size(); i++)
graph[i] = new ArrayList<>();
for (int[] edge : edges) {
final int u = edge[0];
final int v = edge[1];
graph[letterToIndex[u]].add(letterToIndex[v]);
}
for (List<Integer> doubledSubset : getMinimumSubsets(graph)) {
int[] freq = new int[26];
for (final int letter : nodes)
freq[letter] = 1;
for (final int index : doubledSubset)
freq[nodes.get(index)] = 2;
ans.add(Arrays.stream(freq).boxed().collect(Collectors.toList()));
}
return ans;
}
// Returns a list of the minimum subsets of nodes that do not create a cycle
// when skipped.
private List<List<Integer>> getMinimumSubsets(List<Integer>[] graph) {
final int n = graph.length;
List<List<Integer>> res = new ArrayList<>();
for (int subsetSize = 0; subsetSize <= n; ++subsetSize) {
boolean[] combination = new boolean[n];
Arrays.fill(combination, n - subsetSize, n, true);
do {
List<Integer> doubledSubset = new ArrayList<>();
for (int i = 0; i < n; i++)
if (combination[i])
doubledSubset.add(i);
if (!hasCycleSkipping(graph, new HashSet<>(doubledSubset)))
res.add(doubledSubset);
} while (nextPermutation(combination));
if (!res.isEmpty())
return res;
}
return res;
}
// Returns true if there is a cycle in the `graph` when skipping any edges
// whose both endpoints are in `doubledSubset`.
private boolean hasCycleSkipping(List<Integer>[] graph, Set<Integer> doubledSubset) {
State[] states = new State[graph.length];
for (int i = 0; i < graph.length; ++i)
if (hasCycle(graph, i, states, doubledSubset))
return true;
return false;
}
private boolean hasCycle(List<Integer>[] graph, int u, State[] states,
Set<Integer> doubledSubset) {
if (states[u] == State.VISITING)
return true;
if (states[u] == State.VISITED)
return false;
states[u] = State.VISITING;
if (!doubledSubset.contains(u))
for (final int v : graph[u])
if (!doubledSubset.contains(v) && hasCycle(graph, v, states, doubledSubset))
return true;
states[u] = State.VISITED;
return false;
}
private List<int[]> getEdges(String[] words) {
List<int[]> edges = new ArrayList<>();
for (final String word : words)
edges.add(new int[] {word.charAt(0) - 'a', word.charAt(1) - 'a'});
return edges;
}
private List<Integer> getNodes(List<int[]> edges) {
TreeSet<Integer> nodes = new TreeSet<>();
for (int[] edge : edges) {
final int u = edge[0];
final int v = edge[1];
nodes.add(u);
nodes.add(v);
}
return new ArrayList<>(nodes);
}
private int[] getLetterToIndex(List<Integer> nodes) {
int[] letterToIndex = new int[26];
for (int i = 0; i < nodes.size(); ++i)
letterToIndex[nodes.get(i)] = i;
return letterToIndex;
}
private boolean nextPermutation(boolean[] arr) {
final int n = arr.length;
// From back to front, find the first false followed by true
int i;
for (i = n - 2; i >= 0; --i)
if (!arr[i] && arr[i + 1])
break;
// If no such pair found, we've reached the last permutation
if (i < 0)
return false;
// From back to front, find the first true to swap with arr[i].
for (int j = n - 1; j > i; --j)
if (arr[j] && !arr[i]) {
swap(arr, i, j);
break;
}
// Reverse arr[i + 1..n - 1].
reverse(arr, i + 1, n - 1);
return true;
}
private void reverse(boolean[] arr, int l, int r) {
while (l < r)
swap(arr, l++, r--);
}
private void swap(boolean[] arr, int i, int j) {
boolean temp = arr[i];
arr[i] = arr[j];
arr[j] = temp;
}
}
|