Skip to content

3435. Frequencies of Shortest Supersequences

  • Time: $O(2^{16}) = O(1)$
  • Space: $O(26) = O(1)$
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
enum class State { kInit, kVisiting, kVisited };

class Solution {
 public:
  vector<vector<int>> supersequences(vector<string>& words) {
    vector<vector<int>> ans;
    const vector<pair<int, int>> edges = getEdges(words);
    const vector<int> nodes = getNodes(edges);
    const vector<int> letterToIndex = getLetterToIndex(nodes);
    vector<vector<int>> graph(nodes.size());

    for (const auto& [u, v] : edges)
      graph[letterToIndex[u]].push_back(letterToIndex[v]);

    for (const auto& doubledSubset : getMinimumSubsets(graph)) {
      vector<int> freq(26);
      for (const int letter : nodes)
        freq[letter] = 1;
      for (const int index : doubledSubset)
        freq[nodes[index]] = 2;
      ans.push_back(freq);
    }

    return ans;
  }

 private:
  // Returns a list of the minimum subsets of nodes that do not create a cycle
  // when skipped.
  vector<vector<int>> getMinimumSubsets(const vector<vector<int>>& graph) {
    const int n = graph.size();
    vector<vector<int>> res;
    for (int subsetSize = 0; subsetSize <= n; ++subsetSize) {
      vector<bool> combination(n);
      fill(combination.end() - subsetSize, combination.end(), true);
      do {
        vector<int> doubledSubset;
        for (int i = 0; i < n; ++i)
          if (combination[i])
            doubledSubset.push_back(i);
        if (!hasCycleSkipping(graph,
                              {doubledSubset.begin(), doubledSubset.end()}))
          res.push_back(doubledSubset);
      } while (next_permutation(combination.begin(), combination.end()));
      if (!res.empty())
        return res;
    }
    return res;
  }

  // Returns true if there is a cycle in the `graph` when skipping any edges
  // whose both endpoints are in `doubledSubset`.
  bool hasCycleSkipping(const vector<vector<int>>& graph,
                        const unordered_set<int>& doubledSubset) {
    vector<State> states(graph.size());
    for (int i = 0; i < graph.size(); ++i)
      if (hasCycle(graph, i, states, doubledSubset))
        return true;
    return false;
  }

  bool hasCycle(const vector<vector<int>>& graph, int u, vector<State>& states,
                const unordered_set<int>& doubledSubset) {
    if (states[u] == State::kVisiting)
      return true;
    if (states[u] == State::kVisited)
      return false;
    states[u] = State::kVisiting;
    if (!doubledSubset.contains(u))
      for (const int v : graph[u])
        if (!doubledSubset.contains(v) &&
            hasCycle(graph, v, states, doubledSubset))
          return true;
    states[u] = State::kVisited;
    return false;
  }

  vector<pair<int, int>> getEdges(const vector<string>& words) {
    vector<pair<int, int>> edges;
    for (const string& word : words)
      edges.push_back({word[0] - 'a', word[1] - 'a'});
    return edges;
  }

  vector<int> getNodes(const vector<pair<int, int>>& edges) {
    set<int> nodes;
    for (const auto& [u, v] : edges) {
      nodes.insert(u);
      nodes.insert(v);
    }
    return {nodes.begin(), nodes.end()};
  }

  vector<int> getLetterToIndex(const vector<int>& nodes) {
    vector<int> letterToIndex(26);
    for (int i = 0; i < nodes.size(); ++i)
      letterToIndex[nodes[i]] = i;
    return letterToIndex;
  }
};
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
enum State { INIT, VISITING, VISITED }

class Solution {
  public List<List<Integer>> supersequences(String[] words) {
    List<List<Integer>> ans = new ArrayList<>();
    List<int[]> edges = getEdges(words);
    List<Integer> nodes = getNodes(edges);
    int[] letterToIndex = getLetterToIndex(nodes);
    List<Integer>[] graph = new List[nodes.size()];

    for (int i = 0; i < nodes.size(); i++)
      graph[i] = new ArrayList<>();

    for (int[] edge : edges) {
      final int u = edge[0];
      final int v = edge[1];
      graph[letterToIndex[u]].add(letterToIndex[v]);
    }

    for (List<Integer> doubledSubset : getMinimumSubsets(graph)) {
      int[] freq = new int[26];
      for (final int letter : nodes)
        freq[letter] = 1;
      for (final int index : doubledSubset)
        freq[nodes.get(index)] = 2;
      ans.add(Arrays.stream(freq).boxed().collect(Collectors.toList()));
    }

    return ans;
  }

  // Returns a list of the minimum subsets of nodes that do not create a cycle
  // when skipped.
  private List<List<Integer>> getMinimumSubsets(List<Integer>[] graph) {
    final int n = graph.length;
    List<List<Integer>> res = new ArrayList<>();

    for (int subsetSize = 0; subsetSize <= n; ++subsetSize) {
      boolean[] combination = new boolean[n];
      Arrays.fill(combination, n - subsetSize, n, true);
      do {
        List<Integer> doubledSubset = new ArrayList<>();
        for (int i = 0; i < n; i++)
          if (combination[i])
            doubledSubset.add(i);
        if (!hasCycleSkipping(graph, new HashSet<>(doubledSubset)))
          res.add(doubledSubset);
      } while (nextPermutation(combination));
      if (!res.isEmpty())
        return res;
    }
    return res;
  }

  // Returns true if there is a cycle in the `graph` when skipping any edges
  // whose both endpoints are in `doubledSubset`.
  private boolean hasCycleSkipping(List<Integer>[] graph, Set<Integer> doubledSubset) {
    State[] states = new State[graph.length];
    for (int i = 0; i < graph.length; ++i)
      if (hasCycle(graph, i, states, doubledSubset))
        return true;
    return false;
  }

  private boolean hasCycle(List<Integer>[] graph, int u, State[] states,
                           Set<Integer> doubledSubset) {
    if (states[u] == State.VISITING)
      return true;
    if (states[u] == State.VISITED)
      return false;
    states[u] = State.VISITING;
    if (!doubledSubset.contains(u))
      for (final int v : graph[u])
        if (!doubledSubset.contains(v) && hasCycle(graph, v, states, doubledSubset))
          return true;
    states[u] = State.VISITED;
    return false;
  }

  private List<int[]> getEdges(String[] words) {
    List<int[]> edges = new ArrayList<>();
    for (final String word : words)
      edges.add(new int[] {word.charAt(0) - 'a', word.charAt(1) - 'a'});
    return edges;
  }

  private List<Integer> getNodes(List<int[]> edges) {
    TreeSet<Integer> nodes = new TreeSet<>();
    for (int[] edge : edges) {
      final int u = edge[0];
      final int v = edge[1];
      nodes.add(u);
      nodes.add(v);
    }
    return new ArrayList<>(nodes);
  }

  private int[] getLetterToIndex(List<Integer> nodes) {
    int[] letterToIndex = new int[26];
    for (int i = 0; i < nodes.size(); ++i)
      letterToIndex[nodes.get(i)] = i;
    return letterToIndex;
  }

  private boolean nextPermutation(boolean[] arr) {
    final int n = arr.length;

    // From back to front, find the first false followed by true
    int i;
    for (i = n - 2; i >= 0; --i)
      if (!arr[i] && arr[i + 1])
        break;

    // If no such pair found, we've reached the last permutation
    if (i < 0)
      return false;

    // From back to front, find the first true to swap with arr[i].
    for (int j = n - 1; j > i; --j)
      if (arr[j] && !arr[i]) {
        swap(arr, i, j);
        break;
      }

    // Reverse arr[i + 1..n - 1].
    reverse(arr, i + 1, n - 1);
    return true;
  }

  private void reverse(boolean[] arr, int l, int r) {
    while (l < r)
      swap(arr, l++, r--);
  }

  private void swap(boolean[] arr, int i, int j) {
    boolean temp = arr[i];
    arr[i] = arr[j];
    arr[j] = temp;
  }
}
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
from enum import Enum


class State(Enum):
  INIT = 0
  VISITING = 1
  VISITED = 2


class Solution:
  def supersequences(self, words: list[str]) -> list[list[int]]:
    ans = []
    edges = [(string.ascii_lowercase.index(words[0]),
              string.ascii_lowercase.index(words[1]))
             for words in words]
    nodes = sorted({u for u, _ in edges} | {v for _, v in edges})
    letterToIndex = {letter: i for i, letter in enumerate(nodes)}
    graph = [[] for _ in range(len(nodes))]

    for u, v in edges:
      graph[letterToIndex[u]].append(letterToIndex[v])

    for doubledSubset in self._getMinimumSubsets(graph):
      freq = [0] * 26
      for letter in nodes:
        freq[letter] = 1
      for index in doubledSubset:
        freq[nodes[index]] = 2
      ans.append(freq)

    return ans

  def _getMinimumSubsets(self, graph: list[list[int]]) -> list[tuple[int]]:
    """
    Returns a list of the minimum subsets of nodes that do not create a cycle
    when skipped.
    """
    n = len(graph)
    for subsetSize in range(n + 1):
      doubleSubsets = []
      for doubledSubset in itertools.combinations(range(n), subsetSize):
        if not self._hasCycleSkipping(graph, set(doubledSubset)):
          doubleSubsets.append(doubledSubset)
      if doubleSubsets:
        return doubleSubsets
    return []

  def _hasCycleSkipping(
      self,
      graph: list[list[int]],
      doubledSubset: set[int]
  ) -> bool:
    """
    Returns True if there is a cycle in the `graph` when skipping any edges
    whose both endpoints are in `doubledSubset`.
    """
    states = [State.INIT] * len(graph)

    def hasCycle(u: int) -> bool:
      if states[u] == State.VISITING:
        return True
      if states[u] == State.VISITED:
        return False
      states[u] = State.VISITING
      if u not in doubledSubset:
        for v in graph[u]:
          if v in doubledSubset:
            continue
          if hasCycle(v):
            return True
      states[u] = State.VISITED
      return False

    return any(hasCycle(i) for i in range(len(graph)))