Skip to content

3444. Minimum Increments for Target Multiples in an Array πŸ‘ΒΆ

  • Time: O(2∣targetβˆ£β‹…n)O(2^{|\texttt{target}|} \cdot n)
  • Space: O(2∣target∣+n)O(2^{|\texttt{target}|} + n)
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
class Solution {
 public:
  int minimumIncrements(vector<int>& nums, vector<int>& target) {
    const int maxMask = 1 << target.size();
    unordered_map<int, long> maskToLcm;

    for (int mask = 1; mask < maxMask; ++mask) {
      const vector<int> subset = getSubset(mask, target);
      maskToLcm[mask] = getLcm(subset);
    }

    // dp[mask] := the minimum number of increments to make each number in the
    // subset of target have at least one number that is a multiple in `num`,
    // where `mask` is the bitmask of the subset of target
    vector<long> dp(maxMask, LONG_MAX);
    dp[0] = 0;

    for (const int num : nums) {
      // maskToCost := (mask, cost), where `mask` is the bitmask of the subset
      // of target and `cost` is the minimum number of increments to make each
      // number in the subset of target have at least one number that is a
      // multiple in `num`
      vector<pair<int, long>> maskToCost;
      for (const auto& [mask, lcm] : maskToLcm) {
        const int remainder = num % lcm;
        maskToCost.emplace_back(mask, remainder == 0 ? 0 : lcm - remainder);
      }
      vector<long> newDp = dp;
      for (int prevMask = 0; prevMask < maxMask; ++prevMask) {
        if (dp[prevMask] == LONG_MAX)
          continue;
        for (const auto& [mask, cost] : maskToCost) {
          const int nextMask = prevMask | mask;
          newDp[nextMask] = min(newDp[nextMask], dp[prevMask] + cost);
        }
      }
      dp = std::move(newDp);
    }

    return dp.back() == LONG_MAX ? -1 : dp.back();
  }

 private:
  vector<int> getSubset(int mask, const vector<int>& target) {
    vector<int> subset;
    for (int i = 0; i < target.size(); ++i)
      if (mask >> i & 1)
        subset.push_back(target[i]);
    return subset;
  }

  long getLcm(const vector<int>& nums) {
    long res = 1;
    for (const int num : nums)
      res = lcm(res, num);
    return res;
  }
};
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
class Solution {
  public int minimumIncrements(int[] nums, int[] target) {
    final int maxMask = 1 << target.length;
    Map<Integer, Long> maskToLcm = new HashMap<>();

    for (int mask = 1; mask < maxMask; ++mask) {
      List<Integer> subset = getSubset(mask, target);
      maskToLcm.put(mask, getLcm(subset));
    }

    // dp[mask] := the minimum number of increments to make each number in the
    // subset of target have at least one number that is a multiple in `num`,
    // where `mask` is the bitmask of the subset of target
    long[] dp = new long[maxMask];
    Arrays.fill(dp, Long.MAX_VALUE);
    dp[0] = 0;

    for (final int num : nums) {
      // maskToCost := (mask, cost), where `mask` is the bitmask of the subset
      // of target and `cost` is the minimum number of increments to make each
      // number in the subset of target have at least one number that is a
      // multiple in `num`
      List<Pair<Integer, Long>> maskToCost = new ArrayList<>();
      for (Map.Entry<Integer, Long> entry : maskToLcm.entrySet()) {
        final int mask = entry.getKey();
        final long lcm = entry.getValue();
        final long remainder = num % lcm;
        maskToCost.add(new Pair<>(mask, remainder == 0 ? 0 : lcm - remainder));
      }
      long[] newDp = dp.clone();
      for (int prevMask = 0; prevMask < maxMask; ++prevMask) {
        if (dp[prevMask] == Long.MAX_VALUE)
          continue;
        for (Pair<Integer, Long> pair : maskToCost) {
          final int mask = pair.getKey();
          final long cost = pair.getValue();
          final int nextMask = prevMask | mask;
          newDp[nextMask] = Math.min(newDp[nextMask], dp[prevMask] + cost);
        }
      }
      dp = newDp;
    }

    return dp[maxMask - 1] == Long.MAX_VALUE ? -1 : (int) dp[maxMask - 1];
  }

  private List<Integer> getSubset(int mask, int[] target) {
    List<Integer> subset = new ArrayList<>();
    for (int i = 0; i < target.length; ++i)
      if ((mask >> i & 1) == 1)
        subset.add(target[i]);
    return subset;
  }

  private long getLcm(List<Integer> nums) {
    long res = 1;
    for (final int num : nums)
      res = lcm(res, num);
    return res;
  }

  private long lcm(long a, long b) {
    return a * b / gcd(a, b);
  }

  private long gcd(long a, long b) {
    return b == 0 ? a : gcd(b, a % b);
  }
}
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
class Solution:
  def minimumIncrements(self, nums: list[int], target: list[int]) -> int:
    maxMask = 1 << len(target)
    maskToLcm = {}

    for mask in range(1, maxMask):
      subset = [num for i, num in enumerate(target) if mask >> i & 1]
      maskToLcm[mask] = functools.reduce(math.lcm, subset, 1)

    # dp[mask] := the minimum number of increments to make each number in the
    # subset of target have at least one number that is a multiple in `num`,
    # where `mask` is the bitmask of the subset of target
    dp = [math.inf] * maxMask
    dp[0] = 0

    for num in nums:
      # maskToCost := (mask, cost), where `mask` is the bitmask of the subset
      # of target and `cost` is the minimum number of increments to make each
      # number in the subset of target have at least one number that is a
      # multiple in `num`
      maskToCost = [
          (mask, 0 if (remainder := num % lcm) == 0 else lcm - remainder) for mask,
          lcm in maskToLcm.items()]
      newDp = dp[:]
      for prevMask in range(maxMask):
        if dp[prevMask] == float('inf'):
          continue
        for mask, cost in maskToCost:
          nextMask = prevMask | mask
          newDp[nextMask] = min(newDp[nextMask], dp[prevMask] + cost)
      dp = newDp

    return -1 if dp[-1] == math.inf else dp[-1]
Was this page helpful?