class Solution:
def maxSubarrays(self, n: int, conflictingPairs: list[list[int]]) -> int:
validSubarrays = 0
maxLeft = 0
secondMaxLeft = 0
# gains[i] := the number of additional valid subarrays we can gain if the
# restriction at index `i` is removed
gains = [0] * (n + 1)
# conflicts[r] := left endpoints that conflict with subarrays ending in r
conflicts = [[] for _ in range(n + 1)]
for a, b in conflictingPairs:
conflicts[max(a, b)].append(min(a, b))
for right in range(1, n + 1):
for left in conflicts[right]:
if left > maxLeft:
secondMaxLeft = maxLeft
maxLeft = left
elif left > secondMaxLeft:
secondMaxLeft = left
# Subarrays [maxLeft + 1..right],
# [maxLeft + 2..right],
# ...
# [right..right] are valid.
validSubarrays += right - maxLeft
# If we remove `maxLeft` (the most restrictive conflict), we gain
# `maxLeft - secondMaxLeft` new subarrays:
# [secondMaxLeft + 1..right],
# [secondMaxLeft + 2..right],
# ...
# [maxLeft..right].
gains[maxLeft] += maxLeft - secondMaxLeft
return validSubarrays + max(gains)