487. Max Consecutive Ones II 
¶
Approach 1: Sliding Window¶
- Time: $O(n)$
 - Space: $O(1)$
 
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18  |  | 
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17  |  | 
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16  |  | 
Approach 2: Follow up: Generalize to k maxZeros¶
- Time: $O(n)$
 - Space: $O(1)$
 
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18  |  | 
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18  |  | 
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15  |  | 
Approach 3: Follow up: $\texttt{maxZeros == 1}$¶
- Time: $O(n)$
 - Space: $O(1)$
 
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17  |  | 
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16  |  | 
1 2 3 4 5 6 7 8 9 10 11 12 13  |  |